On Estimation of Temporal Fuzzy Sets for Signal Analysis: FCM vs. FMLE Approaches
نویسندگان
چکیده
Estimation of temporal fuzzy sets that model dynamic processes is discussed. It has been found that although poles of attraction can be estimated fairly well with different fuzzy partitioning algorithms, membership function estimates may fail in accurately describing dynamic changes within the observed signals. Two types of fuzzy partitioning algorithms are compared: fuzzy c-means (FCM) and fuzzy maximum likelihood (FMLE). The simulations performed on quasi-stationary Gaussian signals suggest that the membership functions estimated by FMLE fail to follow continuous changes of dynamics, while those estimated by FCM provide a good compromise between precision and physical relevance.
منابع مشابه
Multivariate image segmentation with cluster size insensitive Fuzzy C-means
This paper describes a technique to overcome the sensitivity of fuzzy C-means clustering for unequal cluster sizes in multivariate images. As FCM tends to balance the number of points in each cluster, cluster centres of smaller clusters are drawn to larger adjacent clusters. In order to overcome this, a modified version of FCM, called Conditional FCM, is used to balance the different sized clus...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملA Proposed Hybrid Fuzzy C-means Algorithm With Cluster Center Estimation For Leukemia Image Segmentation
Fuzzy C-means clustering (FCM) is an important technique used in cluster analysis. The standard FCM algorithm calls the centroids to be randomly initialized resulting in the requirement of making estimations from expert users to determine the number of clusters. To overcome these observed limitations of applying the FCM algorithm, an efficient image segmentation model, Hybrid Fuzzy C-means Algo...
متن کاملBias-correction fuzzy clustering algorithms
Keywords: Cluster analysis Fuzzy clustering Fuzzy c-means (FCM) Initialization Bias correction Probability weight a b s t r a c t Fuzzy clustering is generally an extension of hard clustering and it is based on fuzzy membership partitions. In fuzzy clustering, the fuzzy c-means (FCM) algorithm is the most commonly used clustering method. Numerous studies have presented various generalizations o...
متن کاملReliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods
MOTIVATION A serious limitation in microarray analysis is the unreliability of the data generated from low signal intensities. Such data may produce erroneous gene expression ratios and cause unnecessary validation or post-analysis follow-up tasks. Therefore, the elimination of unreliable signal intensities will enhance reproducibility and reliability of gene expression ratios produced from mic...
متن کامل