On Estimation of Temporal Fuzzy Sets for Signal Analysis: FCM vs. FMLE Approaches

نویسندگان

  • Bogdan R. Kosanović
  • Luis F. Chaparro
  • Robert J. Sclabassi
چکیده

Estimation of temporal fuzzy sets that model dynamic processes is discussed. It has been found that although poles of attraction can be estimated fairly well with different fuzzy partitioning algorithms, membership function estimates may fail in accurately describing dynamic changes within the observed signals. Two types of fuzzy partitioning algorithms are compared: fuzzy c-means (FCM) and fuzzy maximum likelihood (FMLE). The simulations performed on quasi-stationary Gaussian signals suggest that the membership functions estimated by FMLE fail to follow continuous changes of dynamics, while those estimated by FCM provide a good compromise between precision and physical relevance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate image segmentation with cluster size insensitive Fuzzy C-means

This paper describes a technique to overcome the sensitivity of fuzzy C-means clustering for unequal cluster sizes in multivariate images. As FCM tends to balance the number of points in each cluster, cluster centres of smaller clusters are drawn to larger adjacent clusters. In order to overcome this, a modified version of FCM, called Conditional FCM, is used to balance the different sized clus...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

A Proposed Hybrid Fuzzy C-means Algorithm With Cluster Center Estimation For Leukemia Image Segmentation

Fuzzy C-means clustering (FCM) is an important technique used in cluster analysis. The standard FCM algorithm calls the centroids to be randomly initialized resulting in the requirement of making estimations from expert users to determine the number of clusters. To overcome these observed limitations of applying the FCM algorithm, an efficient image segmentation model, Hybrid Fuzzy C-means Algo...

متن کامل

Bias-correction fuzzy clustering algorithms

Keywords: Cluster analysis Fuzzy clustering Fuzzy c-means (FCM) Initialization Bias correction Probability weight a b s t r a c t Fuzzy clustering is generally an extension of hard clustering and it is based on fuzzy membership partitions. In fuzzy clustering, the fuzzy c-means (FCM) algorithm is the most commonly used clustering method. Numerous studies have presented various generalizations o...

متن کامل

Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods

MOTIVATION A serious limitation in microarray analysis is the unreliability of the data generated from low signal intensities. Such data may produce erroneous gene expression ratios and cause unnecessary validation or post-analysis follow-up tasks. Therefore, the elimination of unreliable signal intensities will enhance reproducibility and reliability of gene expression ratios produced from mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995